66 research outputs found

    Correlation between Voronoi volumes in disc packings

    Full text link
    We measure the two-point correlation of free Voronoi volumes in binary disc packings, where the packing fraction Ï•avg\phi_{\rm avg} ranges from 0.8175 to 0.8380. We observe short-ranged correlations over the whole range of Ï•avg\phi_{\rm avg} and anti-correlations for Ï•avg>0.8277\phi_{\rm avg}>0.8277. The spatial extent of the anti-correlation increases with Ï•avg\phi_{\rm avg} while the position of the maximum of the anti-correlation and the extent of the positive correlation shrink with Ï•avg\phi_{\rm avg}. We conjecture that the onset of anti-correlation corresponds to dilatancy onset in this system

    "Barchan" dunes in the lab

    Get PDF
    We demonstrate the feasibility of studying dunes in a laboratory experiment. It is shown that an initial sand pile, under a wind flow carrying sand, flattens and gets a shape recalling barchan dunes. An evolution law is proposed for the profile and the summit of the dune. The dune dynamics is shown to be shape invariant. The invariant shape, the ``dune function'' is isolated.Comment: 3 pages, 4 figure

    Super-diffusion around the rigidity transition: Levy and the Lilliputians

    Full text link
    By analyzing the displacement statistics of an assembly of horizontally vibrated bidisperse frictional grains in the vicinity of the jamming transition experimentally studied before, we establish that their superdiffusive motion is a genuine Levy flight, but with `jump' size very small compared to the diameter of the grains. The vibration induces a broad distribution of jumps that are random in time, but correlated in space, and that can be interpreted as micro-crack events at all scales. As the volume fraction departs from the critical jamming density, this distribution is truncated at a smaller and smaller jump size, inducing a crossover towards standard diffusive motion at long times. This interpretation contrasts with the idea of temporally persistent, spatially correlated currents and raises new issues regarding the analysis of the dynamics in terms of vibrational modes.Comment: 7 pages, 6 figure

    Evidence of Deep Water Penetration in Silica during Stress Corrosion Fracture

    Get PDF
    We measure the thickness of the heavy water layer trapped under the stress corrosion fracture surface of silica using neutron reflectivity experiments. We show that the penetration depth is 65–85 Å, suggesting the presence of a damaged zone of ~100 Å extending ahead of the crack tip during its propagation. This estimate of the size of the damaged zone is compatible with other recent results

    Kinetic Heterogeneities at Dynamical Crossovers

    Full text link
    We perform molecular dynamics simulations of a model glass-forming liquid to measure the size of kinetic heterogeneities, using a dynamic susceptibility χss(a,t)\chi_{\rm ss}(a, t) that quantifies the number of particles whose dynamics are correlated on the length scale aa and time scale tt. By measuring χss(a,t)\chi_{\rm ss}(a, t) as a function of both aa and tt, we locate local maxima χ⋆\chi^\star at distances a⋆a^\star and times t⋆t^\star. Near the dynamical glass transition, we find two types of maxima, both correlated with crossovers in the dynamical behavior: a smaller maximum corresponding to the crossover from ballistic to sub-diffusive motion, and a larger maximum corresponding to the crossover from sub-diffusive to diffusive motion. Our results indicate that kinetic heterogeneities are not necessarily signatures of an impending glass or jamming transition.Comment: 6 pages, 4 figure

    A deductive statistical mechanics approach for granular matter

    Get PDF
    We introduce a deductive statistical mechanics approach for granular materials which is formally built from few realistic physical assumptions. The main finding is an universal behavior for the distribution of the density fluctuations. Such a distribution is the equivalent of the Maxwell-Boltzmann's distribution in the kinetic theory of gasses. The comparison with a very extensive set of experimental and simulation data for packings of monosized spherical grains, reveals a remarkably good quantitative agreement with the theoretical predictions for the density fluctuations both at the grain level and at the global system level. Such agreement is robust over a broad range of packing fractions and it is observed in several distinct systems prepared by using different methods. The equilibrium distributions are characterized by only one parameter (kk) which is a quantity very sensitive to changes in the structural organization. The thermodynamical equivalent of kk and its relation with the `granular temperature' are also discussed.Comment: 15 pages, 6 figure

    Rheology and dynamical heterogeneity in frictionless beads at jamming density

    Full text link
    We investigate the rheological properties of an assembly of inelastic (but frictionless) particles close to the jamming density using numerical simulation, in which uniform steady states with a constant shear rate γ˙\dot\gamma is realized. The system behaves as a power-law fluid and the relevant exponents are estimated; e.g., the shear stress is proportional to γ˙1/δS\dot\gamma^{1/\delta_S}, where 1/δS=0.64(2)1/\delta_S=0.64(2). It is also found that the relaxation time τ\tau and the correlation length ξ\xi of the velocity increase obeying power laws: τ∼γ˙−β\tau\sim\dot\gamma^{-\beta} and ξ∼γ˙−α\xi\sim\dot\gamma^{-\alpha}, where β=0.27(3)\beta=0.27(3) and α=0.23(3)\alpha=0.23(3)

    Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass

    Full text link
    The dynamical properties of a dense horizontally vibrated bidisperse granular monolayer are experimentally investigated. The quench protocol produces states with a frozen structure of the assembly, but the remaining degrees of freedom associated with contact dynamics control the appearance of macroscopic rigidity. We provide decisive experimental evidence that this transition is a critical phenomenon, with increasingly collective and heterogeneous rearrangements occurring at length scales much smaller than the grains' diameter, presumably reflecting the contact force network fluctuations. Dynamical correlation time and length scales soar on both sides of the transition, as the volume fraction varies over a remarkably tiny range (δϕ/ϕ∼10−3\delta \phi/\phi \sim 10^{-3}). We characterize the motion of individual grains, which becomes super-diffusive at the jamming transition ϕJ\phi_J, signaling long-ranged temporal correlations. Correspondingly, the system exhibits long-ranged four-point dynamical correlations in space that obey critical scaling at the transition density.Comment: 4 pages, 8 figure

    Jaming and Geometry of Two-Dimensional Foams

    Get PDF
    We experimentally probe the vicinity of the jamming point J, located at a density Ï•\phi corresponding to random close packing (Ï•rcp=0.842\phi_{rcp} = 0.842), in two dimensional, bidisperse packings of foam bubbles. We vary the density of the foam layer and extract geometrical measures by image analysis. We confirm the predicted scaling of the average contact number Z with Ï•\phi and compare the distribution of local contact numbers to a simple model. We further establish that the distribution of areas p(A)p(A) strongly depends on Ï•\phi. Finally, we find that the distribution of contact forces p(f)p(f) systematically varies with density.Comment: 6 pages, 5 figures, submitte
    • …
    corecore